

Loss of electrons

(Gain of oxygen)

Gain of electrons

(Loss of oxygen)

"LEO the lion goes GER."
Losing Electrons is Oxidation
Gaining Electrons is Reduction

Oxidation of Food: What a Waste!

- Fruits and Vegetables oxidised when left in open air
 - Solution: Seal in plastic wrap
 - More radical: Add lemon juice to the cut fruit

Oxidation of... People!

- Oxidation of nutrients causes increased activity of cells, leading to aging skin
 - Solution: Beauty products?

What is a redox reaction?

- Redox reduction + oxidation
- Both processes occur simultaneously
- Hence, one species is oxidised, another is reduced
- So, what is oxidation, and what is reduction?
- 3 different versions of the definition:

Redox

Oxidation	Reduction
gain in oxygen	loss of oxygen
loss of hydrogen	gain in hydrogen
loss of electrons	gain of electrons

Oxidation and Reduction

- In terms of Oxygen:
 - Oxidation: Gain of oxygen in a species
 - E.g. Mg is oxidized to MgO
 - Reduction: Loss of oxygen in a species
 - E.g. H₂O is reduced to H₂
 - Note: It's the gain or loss of O, not O²

Oxidation and Reduction

- In terms of Hydrogen:
 - Oxidation: Loss of hydrogen in a species
 - E.g. H₂O is oxidised to O₂
 - Reduction: Gain of hydrogen in a species
 - ☐ E.g. O₂ is reduced to H₂O₂
 - Note: It's the gain or loss of H, not H⁺

Oxidation and Reduction

- In terms of Electrons (OIL RIG: Oxidation Is Loss, Reduction Is Gain):
 - Oxidation: Loss of electrons in a species
 - E.g. Mg is oxidized to MgO (Mg from 12 electrons to 10 electrons in Mg²⁺)
 - Reduction: Gain of electrons in a species
 - □ E.g. O_2 is reduced to H_2O_2 (O from 8 electrons to 9 electrons per O in O_2 ²)

Oxidising and Reducing agent

- An <u>oxidising agent</u> is a chemical species that causes the other reactant in a redox reaction to be oxidised, and it <u>is always reduced</u> in the process.
- A <u>reducing agent</u> is a chemical species that causes the other reactant in a redox reaction to be reduced, and it <u>is always oxidised</u> in the process.

The substance that donates electrons in a redox reaction is the REDUCING AGENT

The substance that takes electrons in a redox reaction is the OXIDIZING AGENT

Oxidation is...

- -the loss of electrons
- -an increase in oxidation state
- -the addition of oxygen
- -the loss of hydrogen

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$

notice the magnesium is losing electrons

Reduction is...

- -the gain of electrons
- -a decrease in oxidation state
- -the loss of oxygen
- -the addition of hydrogen

$$MgO + H_2 \rightarrow Mg + H_2O$$

notice the Mg²⁺ in MgO is gaining electrons

Development of oxidation and reduction reaction concept

1. Reaction of reduction oxidation based on releasing (lossing) and gaining of oxygen

a. Oxidation reaction

Oxidation reaction is a reaction of gaining (capturing) of oxygen by a substance

Example:

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{g)}$$

 $P_{4(s)} + 5O_{2(g)} \longrightarrow 2P_2O_{5(s)}$

b. Reduction reaction

Reduction reaction is a reaction of releasing (lossing) of oxygen from a oxide compound

Example:

$$CuO_{(s)} + H_{2(g)} \longrightarrow Cu_{(s)} + H_2O_{(g)}$$

 $Fe_2O_{3(s)} + 3CO_{(g)} \longrightarrow 2Fe_{(s)} + 3CO_{2(g)}$

2. Reduction oxidation reaction based on electron transfer

a. Oxidation reaction

Oxidation reaction is a reaction of **electron releasing** (**lossing**) from a substance.

Example:

Na
$$\longrightarrow$$
 Na⁺ + e⁻
Mg \longrightarrow Mg²⁺ + 2 e⁻
Cu \longrightarrow Cu²⁺ + 2 e⁻

b. Reduction reaction

Reduction reaction is a reaction of **electron gaining** by a substance. Example:

$$Cl_2 + 2e^- \longrightarrow 2Cl^-$$

 $S + 2e^- \longrightarrow S^{2-}$

Oxidizing Agent (Oxidant) and Reducing Agent (Reductant)

The reactants that involve in a redox reaction can be differentiated into two kinds, that is oxidizing agent (oxidant) and reducing agent (reductant)

Oxidizing agent (oxidant)

Oxidizing agent is:

- ❖ a reactant that **oxidizes** other reactant
- a reactant that can gain electron
- ❖ a reactant that in a reaction undergoes **reduction**
- a reactant that in a reaction undergoes decreasing in oxidation

number

Examples: Halogen, F₂, Cl₂, Br₂, I₂ Oxygen, O₂

Cl₂ is **oxidizing agent** (**oxidant**), because in that reaction Cl₂ undergoes **reduction** or **decreasing** in **oxidation number**, from 0 to -1

•Reducing agent (reductant)

Reducing agent is:

- * a substance (reactant) that **reduces** other substances (reactants)
- ❖ a substance (reactant) that can loss electron
- ❖ a substance (reactant) that in the reaction undergoes **oxidation**
- a substance (reactant) that undergoes increasing in oxidation number

Example:

Hydrogen, H₂ Ion halides; F-, Cl-, Br-, I-metals

o. n. of H increases from 0 to +1

 H_2 is reducing agent (reductant), because in that reaction H_2 undergoes oxidation or increasing in oxidation number, from 0 to +1

Reagents used in redox titration

Oxidizing agents

- 1) Potassium permanganate KMnO₄ : Permanganometry
- 2) Ceric sulfate / Ceric ammonium sulfate $Ce(SO_4)_2 \cdot 2(NH_4)_2SO_4 \cdot 4H_2O$: Cerimetry
 - 3) Potassium dichromate $K_2Cr_2O_7$: Dichrometry
 - 4) Iodine I₂: Iodimetry, Iodometry
 - 5) Potassium iodate KIO₃: Iodatimetry
 - 6) Potassium bromate KBrO₃: Bromatimetry

Some common oxidizing agents

- Oxygen!
 - Oxidized coal in electric power
 - Gas in automobiles
 - Wood in campfires
 - Food we eat
- Antiseptics
 - Hydrogen Peroxide
 - Benzoyl peroxide
- Disinfectants
 - Chlorine

Reagents used in redox titration

Reducing agents

- 1) ammonium iron(II) sulfate hexahydrate (Mohr's salt) FeSO₄(NH₄)₂SO₄· 6H₂O
 - 2) iron(II) ethylene diamine sulfate (Oesper's salt) FeC₂H₄(NH₃)₂(SO₄)₂·4H₂O
 - 3) Sodium thiosulfate pentahydrate Na₂S₂O₃·5H₂O
 - 4) Arsenic trioxide: arsenious oxide As₂O₃
 - 5) Sodium oxalate and oxalic acid dihydarte Na₂(COO)₂, (COOH)₂·2H₂O

Some common reducing agents

- Metals
- Antioxidants
 - Ascorbic acid is used to prevent the browning of fruits by inhibiting air oxidation
 - Many antioxidants are believed to retard various oxidation reactions that are potentially damaging to vital components of living cells

What's the point?

REDOX reactions are important in

• • •

- Purifying metals (e.g. Al, Na, Li)
- Producing gases
 (e.g. Cl₂, O₂, H₂)
- Electroplating metals
- Electrical production (batteries, fuel cells)
- Protecting metals from corrosion
- Balancing complex chemical equations
- Sensors and machines (e.g. pH meter)

Assigning Oxidation Numbers

An <u>oxidation number</u> is a positive or negative number assigned to an atom to indicate its degree of oxidation or reduction.

As a general rule, a bonded atom's oxidation # is the charge that it would have if the electrons in the bond were assigned to the atom of the more electronegative element.

Rule	Example
1. The oxidation number of any uncombined element is 0.	The oxidation number of Na(s) is 0
 The oxidation number of a monatomic ion equals the charge on the ion. 	The oxidation number of Cl ⁻ is -1.
 The more electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion. 	The oxidation number of O in NO is –2.
 The oxidation number of fluorine in a compound is always −1. 	The oxidation number of F in LiF is -1.
 Oxygen has an oxidation number of −2 unless it is combined with F, when it is +2, or it is in a peroxide, such as H₂O₂, when it is −1. 	The oxidation number of O in NO ₂ is -2.
 The oxidation state of hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is −1. 	The oxidation number of H in LiH is -1.
 In compounds, Group 1 and 2 elements and aluminum have oxidation numbers of +1, +2, and +3, respectively. 	The oxidation number of Ca in CaCO ₃ is +2.
 The sum of the oxidation numbers of all atoms in a neutral compound is 0. 	The oxidation number of C in CaCO ₃ is +4.
 The sum of the oxidation numbers of all atoms in a polyatomic ion equals the charge of the ion. 	The oxidation number of P in $H_2PO_4^-$ is +5.

The sum of the oxidation numbers of all the atoms in a compound is zero.

CuO

Oxygen is -2

The oxidation number of copper must be calculated

$$X + -2 = 0$$

$$X = +2$$

Na₂SO₄

- Na is +1 because it is a group 1 metal
- O is -2
- The oxidation number of Sulfur must be calculated

$$2(+1) + X + 4(-2) = 0$$

$$(2) + X + (-8) = 0$$

$$X = +6$$

The sum of the oxidation numbers of all the atoms in a polyatomic ion is the charge of the ion.

► NO₃

Oxygen is 2-

The oxidation number of nitrogen must be calculated

$$X + 3(-2) = -1$$

$$X = 5+$$

PO₄3-

Oxygen is 2-

The oxidation number of phosphorous must be calculated

$$X + 4(-2) = -3$$

$$X + (-8) = -3$$

$$X = +5$$

20.5 Balancing Redox Equations

There are two methods used to balance redox reactions

1)the oxidation number change method

2) the half reaction method

- Using the <u>oxidation-number change method</u>
- $ightharpoonup Fe_2O_{3(s)} + CO_{(g)} \rightarrow Fe_{(s)} + CO_{2(g)}$ (unbalanced)
- Step 1 assign oxidation #s to all the atoms in the equation.
- Step 2 ID atoms oxidized and reduced.

$$+3$$
 -2 $+2-2$ 0 $+4-2$
 $Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$

Step 3 – Use one bracketing line to connect the atoms that undergo oxidation & another to connect reduced.

$$+3$$
 -2 $+2$ -2 0 $+4$ -2 $+2$ -3 (reduction)

Step 4 – Make the total increase in onuation π equal to the total decrease in oxidation # by using appropriate coefficients.

$$Fe_2O_3(s) + 3CO(g) \longrightarrow 2Fe(s) + 3CO_2(g)$$

$$2 \times (-3) = -6$$

Electrochemical Cells

There are two kinds of electro chemical cells, galvanic or electrolytic.

In galvanic cells, the chemical reaction occurs spontaneously to produce electrical energy.

In a electrolytic cell, electrical energy is used to force the non spontaneous chemical reaction.

If a solution containing Fe²⁺ is mixed with another solution containing Ce⁴⁺, there will be a redox reaction situation due to their tendency of transfer electrons. If we consider that these two solution are kept in separate beaker and connected by salt bridge and a platinum wire that will become a galvanic cell. If we connect a voltmeter between two electrode, the potential difference of two electrode can be directly measured.

The Fe²⁺ is being oxidised at the platinum wire (the anode):

$$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$

The electron thus produced will flow through the wire to the other beaker where the Ce⁴⁺ is reduced (at the cathode).

Cell Potential

- Oxidizing agent pulls the electron.
- Reducing agent pushes the electron.
- The push or pull ("driving force") is called the cell potential $\boldsymbol{\mathsf{E}}_{\text{cell}}$
- Also called the electromotive force (emf)
- Unit is the volt(V)
- = 1 joule of work/coulomb of charge
- Measured with a voltmeter

Introduction to iodometric and iodimetric titrations

	Titration example	Analyte	Titrant	Indicator
Acid-base	Quantification of acetic acid in avinegar	Acetic acid (CH₃COOH)	NaOH (sodium hydroxide)	Phenolphthalein
Complexometric	Water Hardness (Calcium and magnesium)	Calcium and magnesium (Ca ²⁺ , Mg ²⁺)	EDTA	Eriochrome black T Murexide
Precipitation	Quantification of chloride (Cl ⁻) in water	Chlordie	AgNO ₃ (silver nitrate)	Mohr, Volhard, Fajans
Redox	Quantification of hydrogen peroxide (H ₂ O ₂)	Hydrogen peroxide (H ₂ O ₂)	KMnO₄ (potassium permanganate)	No indicator

Fact File 1: Introduction to iodometric and iodimetric titrations

Titrations:

- Direct Titrations
- Indirect Titrations
- Back Titrations
- lodometry

Titrations	Example		Type of reaction
Acid-base	Quantification acid in vinegar	of acetic	□ Direct Titration □ Indirect Titration □ Back Titration
Complexo metric	Water Hardness and magnesium	`	□ Direct Titration □ Indirect Titration □ Back Titration
Precipitation	Quantification of CI in Water	Mohr Method	□ Direct Titration □ Indirect Titration □ Back Titration
		Fajans Method	□ Direct Titration □ Indirect Titration □ Back Titration
		Volhard Method	□ Direct Titration □ Indirect Titration □ Back Titration
Redox	Quantification o peroxide (H ₂ O ₂)		□ Direct Titration □ Indirect Titration □ Back Titration

There are a lot of redox titrations classified according to the titrant used.

- 1) Permanganimetric: Titrant KMnO₄
- 2) Dichromatometric: Titrant K₂Cr₂O₇
- 3) Titrations involving iodine (I₂)
 - •lodimetry
 - lodometry

Titrations that create or consume I₂ are widely used in quantitative analysis.

When a reducing analyte is titrated with iodine (the titrant), the method is called iodimetry.

Example: Quantification of Ascorbic Acid (Vitamin C)

$$\mathrm{C_6H_8O_6} + \mathrm{I_2} \rightarrow \mathrm{C_cH_6O_6} + 2\mathrm{I^-} + 2\mathrm{H^+}$$

Iodine rapidly oxidizes ascorbic acid, $C_6H_8O_6$, to produce dehydroascorbic acid, $C_6H_6O_6$.

Ascorbic acid

Dehydroascorbic acid

Pictures taken from: http://en.wikipedia.org

lodometry is the titration of iodine (I₂) produced when an oxidizing analyte is added to excess I-(iodide).

Then the iodine (I_2) is usually titrated with standard **thiosulfate** solution.

Iodometry: Not a direct titration because there are 2 reactions:

analyte + $I^ \rightarrow$ I_2

I₂ + titrant (standard thiosulfate) → product Known

lodimetric titrations:

- a) A reducing analyte
- b) One reaction
- c) Standard solution: Iodine (I₂)

lodometric titrations:

- a) An oxidizing analyte
- b) Two reactions
- c) Standard solution: Sodium thisoufate

Analytical applications:

lodimetric titrations:

Species analyzed (reducing analytes)

$$SO_2$$
, H_2S , Zn^{2+} , Cd^{2+} , Hg^{2+} , Pb^{2+}

Cysteine, glutathione, mercaptoethanol

Glucose (and other reducing sugars)

lodometric titrations:

Species analyzed (oxidizing analytes)

$$NO_2^{-}$$
, Cu ²⁺

	Direct lodimetric method	Indirect Iodometric method	
Titrating agent	lodine for determination of reducing agents	I ⁻ is added to oxidizing agents,the librated I ₂ is titr. with Na ₂ S ₂ O ₃	
Indicator (Starch)	Added at the beginning of titr.	Added near the end of titr (when the brown color of I ₂ becomes pale)	
Type of reaction	One step reaction	Two step reactions	
Standard solution	Standard solution: Iodine (I ₂)	Standard solution: Sodium thisoufate	
E.P.	permanent blue color	disappearance of blue color	

lodine as oxidant

