Loss of electrons (Gain of oxygen) Gain of electrons (Loss of oxygen) "LEO the lion goes GER." Losing Electrons is Oxidation Gaining Electrons is Reduction ### Oxidation of Food: What a Waste! - Fruits and Vegetables oxidised when left in open air - Solution: Seal in plastic wrap - More radical: Add lemon juice to the cut fruit # Oxidation of... People! - Oxidation of nutrients causes increased activity of cells, leading to aging skin - Solution: Beauty products? # What is a redox reaction? - Redox reduction + oxidation - Both processes occur simultaneously - Hence, one species is oxidised, another is reduced - So, what is oxidation, and what is reduction? - 3 different versions of the definition: # Redox | Oxidation | Reduction | |-------------------|-------------------| | gain in oxygen | loss of oxygen | | loss of hydrogen | gain in hydrogen | | loss of electrons | gain of electrons | # Oxidation and Reduction - In terms of Oxygen: - Oxidation: Gain of oxygen in a species - E.g. Mg is oxidized to MgO - Reduction: Loss of oxygen in a species - E.g. H₂O is reduced to H₂ - Note: It's the gain or loss of O, not O² # Oxidation and Reduction - In terms of Hydrogen: - Oxidation: Loss of hydrogen in a species - E.g. H₂O is oxidised to O₂ - Reduction: Gain of hydrogen in a species - ☐ E.g. O₂ is reduced to H₂O₂ - Note: It's the gain or loss of H, not H⁺ # Oxidation and Reduction - In terms of Electrons (OIL RIG: Oxidation Is Loss, Reduction Is Gain): - Oxidation: Loss of electrons in a species - E.g. Mg is oxidized to MgO (Mg from 12 electrons to 10 electrons in Mg²⁺) - Reduction: Gain of electrons in a species - □ E.g. O_2 is reduced to H_2O_2 (O from 8 electrons to 9 electrons per O in O_2 ²) # Oxidising and Reducing agent - An <u>oxidising agent</u> is a chemical species that causes the other reactant in a redox reaction to be oxidised, and it <u>is always reduced</u> in the process. - A <u>reducing agent</u> is a chemical species that causes the other reactant in a redox reaction to be reduced, and it <u>is always oxidised</u> in the process. # The substance that donates electrons in a redox reaction is the REDUCING AGENT # The substance that takes electrons in a redox reaction is the OXIDIZING AGENT #### Oxidation is... - -the loss of electrons - -an increase in oxidation state - -the addition of oxygen - -the loss of hydrogen $$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$ notice the magnesium is losing electrons #### Reduction is... - -the gain of electrons - -a decrease in oxidation state - -the loss of oxygen - -the addition of hydrogen $$MgO + H_2 \rightarrow Mg + H_2O$$ notice the Mg²⁺ in MgO is gaining electrons #### Development of oxidation and reduction reaction concept # 1. Reaction of reduction oxidation based on releasing (lossing) and gaining of oxygen #### a. Oxidation reaction Oxidation reaction is a reaction of gaining (capturing) of oxygen by a substance Example: $$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{g)}$$ $P_{4(s)} + 5O_{2(g)} \longrightarrow 2P_2O_{5(s)}$ #### b. Reduction reaction Reduction reaction is a reaction of releasing (lossing) of oxygen from a oxide compound Example: $$CuO_{(s)} + H_{2(g)} \longrightarrow Cu_{(s)} + H_2O_{(g)}$$ $Fe_2O_{3(s)} + 3CO_{(g)} \longrightarrow 2Fe_{(s)} + 3CO_{2(g)}$ #### 2. Reduction oxidation reaction based on electron transfer #### a. Oxidation reaction Oxidation reaction is a reaction of **electron releasing** (**lossing**) from a substance. #### Example: Na $$\longrightarrow$$ Na⁺ + e⁻ Mg \longrightarrow Mg²⁺ + 2 e⁻ Cu \longrightarrow Cu²⁺ + 2 e⁻ #### b. Reduction reaction Reduction reaction is a reaction of **electron gaining** by a substance. Example: $$Cl_2 + 2e^- \longrightarrow 2Cl^-$$ $S + 2e^- \longrightarrow S^{2-}$ #### Oxidizing Agent (Oxidant) and Reducing Agent (Reductant) The reactants that involve in a redox reaction can be differentiated into two kinds, that is oxidizing agent (oxidant) and reducing agent (reductant) Oxidizing agent (oxidant) #### Oxidizing agent is: - ❖ a reactant that **oxidizes** other reactant - a reactant that can gain electron - ❖ a reactant that in a reaction undergoes **reduction** - a reactant that in a reaction undergoes decreasing in oxidation #### number Examples: Halogen, F₂, Cl₂, Br₂, I₂ Oxygen, O₂ Cl₂ is **oxidizing agent** (**oxidant**), because in that reaction Cl₂ undergoes **reduction** or **decreasing** in **oxidation number**, from 0 to -1 #### •Reducing agent (reductant) #### Reducing agent is: - * a substance (reactant) that **reduces** other substances (reactants) - ❖ a substance (reactant) that can loss electron - ❖ a substance (reactant) that in the reaction undergoes **oxidation** - a substance (reactant) that undergoes increasing in oxidation number #### Example: Hydrogen, H₂ Ion halides; F-, Cl-, Br-, I-metals o. n. of H increases from 0 to +1 H_2 is reducing agent (reductant), because in that reaction H_2 undergoes oxidation or increasing in oxidation number, from 0 to +1 # Reagents used in redox titration #### Oxidizing agents - 1) Potassium permanganate KMnO₄ : Permanganometry - 2) Ceric sulfate / Ceric ammonium sulfate $Ce(SO_4)_2 \cdot 2(NH_4)_2SO_4 \cdot 4H_2O$: Cerimetry - 3) Potassium dichromate $K_2Cr_2O_7$: Dichrometry - 4) Iodine I₂: Iodimetry, Iodometry - 5) Potassium iodate KIO₃: Iodatimetry - 6) Potassium bromate KBrO₃: Bromatimetry # Some common oxidizing agents - Oxygen! - Oxidized coal in electric power - Gas in automobiles - Wood in campfires - Food we eat - Antiseptics - Hydrogen Peroxide - Benzoyl peroxide - Disinfectants - Chlorine #### Reagents used in redox titration #### Reducing agents - 1) ammonium iron(II) sulfate hexahydrate (Mohr's salt) FeSO₄(NH₄)₂SO₄· 6H₂O - 2) iron(II) ethylene diamine sulfate (Oesper's salt) FeC₂H₄(NH₃)₂(SO₄)₂·4H₂O - 3) Sodium thiosulfate pentahydrate Na₂S₂O₃·5H₂O - 4) Arsenic trioxide: arsenious oxide As₂O₃ - 5) Sodium oxalate and oxalic acid dihydarte Na₂(COO)₂, (COOH)₂·2H₂O # Some common reducing agents - Metals - Antioxidants - Ascorbic acid is used to prevent the browning of fruits by inhibiting air oxidation - Many antioxidants are believed to retard various oxidation reactions that are potentially damaging to vital components of living cells # What's the point? REDOX reactions are important in • • • - Purifying metals (e.g. Al, Na, Li) - Producing gases (e.g. Cl₂, O₂, H₂) - Electroplating metals - Electrical production (batteries, fuel cells) - Protecting metals from corrosion - Balancing complex chemical equations - Sensors and machines (e.g. pH meter) # **Assigning Oxidation Numbers** An <u>oxidation number</u> is a positive or negative number assigned to an atom to indicate its degree of oxidation or reduction. As a general rule, a bonded atom's oxidation # is the charge that it would have if the electrons in the bond were assigned to the atom of the more electronegative element. | Rule | Example | |--|--| | 1. The oxidation number of any uncombined element is 0. | The oxidation number of Na(s) is 0 | | The oxidation number of a monatomic ion equals the
charge on the ion. | The oxidation number of Cl ⁻ is -1. | | The more electronegative element in a binary compound is assigned
the number equal to the charge it would have if it were an ion. | The oxidation number of O in NO is –2. | | The oxidation number of fluorine in a compound is always −1. | The oxidation number of F in LiF is -1. | | Oxygen has an oxidation number of −2 unless it is combined with F,
when it is +2, or it is in a peroxide, such as H₂O₂, when it is −1. | The oxidation number of O in NO ₂ is -2. | | The oxidation state of hydrogen in most of its compounds is +1
unless it is combined with a metal, in which case it is −1. | The oxidation number of H in LiH is -1. | | In compounds, Group 1 and 2 elements and aluminum have
oxidation numbers of +1, +2, and +3, respectively. | The oxidation number of Ca in CaCO ₃ is +2. | | The sum of the oxidation numbers of all atoms
in a neutral compound is 0. | The oxidation number of C in CaCO ₃ is +4. | | The sum of the oxidation numbers of all atoms in a
polyatomic ion equals the charge of the ion. | The oxidation number of P in $H_2PO_4^-$ is +5. | # The sum of the oxidation numbers of all the atoms in a compound is zero. CuO Oxygen is -2 The oxidation number of copper must be calculated $$X + -2 = 0$$ $$X = +2$$ #### Na₂SO₄ - Na is +1 because it is a group 1 metal - O is -2 - The oxidation number of Sulfur must be calculated $$2(+1) + X + 4(-2) = 0$$ $$(2) + X + (-8) = 0$$ $$X = +6$$ # The sum of the oxidation numbers of all the atoms in a polyatomic ion is the charge of the ion. **►** NO₃ Oxygen is 2- The oxidation number of nitrogen must be calculated $$X + 3(-2) = -1$$ $$X = 5+$$ PO₄3- Oxygen is 2- The oxidation number of phosphorous must be calculated $$X + 4(-2) = -3$$ $$X + (-8) = -3$$ $$X = +5$$ # 20.5 Balancing Redox Equations There are two methods used to balance redox reactions 1)the oxidation number change method 2) the half reaction method - Using the <u>oxidation-number change method</u> - $ightharpoonup Fe_2O_{3(s)} + CO_{(g)} \rightarrow Fe_{(s)} + CO_{2(g)}$ (unbalanced) - Step 1 assign oxidation #s to all the atoms in the equation. - Step 2 ID atoms oxidized and reduced. $$+3$$ -2 $+2-2$ 0 $+4-2$ $Fe_2O_3(s) + CO(g) \longrightarrow Fe(s) + CO_2(g)$ Step 3 – Use one bracketing line to connect the atoms that undergo oxidation & another to connect reduced. $$+3$$ -2 $+2$ -2 0 $+4$ -2 $+2$ -3 (reduction) **Step 4** – Make the total increase in onuation π equal to the total decrease in oxidation # by using appropriate coefficients. $$Fe_2O_3(s) + 3CO(g) \longrightarrow 2Fe(s) + 3CO_2(g)$$ $$2 \times (-3) = -6$$ # Electrochemical Cells There are two kinds of electro chemical cells, galvanic or electrolytic. In galvanic cells, the chemical reaction occurs spontaneously to produce electrical energy. In a electrolytic cell, electrical energy is used to force the non spontaneous chemical reaction. If a solution containing Fe²⁺ is mixed with another solution containing Ce⁴⁺, there will be a redox reaction situation due to their tendency of transfer electrons. If we consider that these two solution are kept in separate beaker and connected by salt bridge and a platinum wire that will become a galvanic cell. If we connect a voltmeter between two electrode, the potential difference of two electrode can be directly measured. The Fe²⁺ is being oxidised at the platinum wire (the anode): $$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$$ The electron thus produced will flow through the wire to the other beaker where the Ce⁴⁺ is reduced (at the cathode). # Cell Potential - Oxidizing agent pulls the electron. - Reducing agent pushes the electron. - The push or pull ("driving force") is called the cell potential $\boldsymbol{\mathsf{E}}_{\text{cell}}$ - Also called the electromotive force (emf) - Unit is the volt(V) - = 1 joule of work/coulomb of charge - Measured with a voltmeter #### Introduction to iodometric and iodimetric titrations | | Titration example | Analyte | Titrant | Indicator | |----------------|--|--|---------------------------------------|-----------------------------------| | Acid-base | Quantification of acetic acid in avinegar | Acetic acid
(CH₃COOH) | NaOH (sodium
hydroxide) | Phenolphthalein | | Complexometric | Water Hardness
(Calcium and
magnesium) | Calcium and magnesium (Ca ²⁺ , Mg ²⁺) | EDTA | Eriochrome black
T
Murexide | | Precipitation | Quantification of chloride (Cl ⁻) in water | Chlordie | AgNO ₃ (silver
nitrate) | Mohr, Volhard,
Fajans | | Redox | Quantification of hydrogen peroxide (H ₂ O ₂) | Hydrogen peroxide (H ₂ O ₂) | KMnO₄ (potassium
permanganate) | No indicator | #### Fact File 1: Introduction to iodometric and iodimetric titrations #### Titrations: - Direct Titrations - Indirect Titrations - Back Titrations - lodometry | Titrations | Example | | Type of reaction | |--------------------|--|-------------------|--| | Acid-base | Quantification acid in vinegar | of acetic | □ Direct Titration □ Indirect Titration □ Back Titration | | Complexo
metric | Water Hardness and magnesium | ` | □ Direct Titration □ Indirect Titration □ Back Titration | | Precipitation | Quantification of CI in Water | Mohr
Method | □ Direct Titration □ Indirect Titration □ Back Titration | | | | Fajans
Method | □ Direct Titration □ Indirect Titration □ Back Titration | | | | Volhard
Method | □ Direct Titration □ Indirect Titration □ Back Titration | | Redox | Quantification o peroxide (H ₂ O ₂) | | □ Direct Titration □ Indirect Titration □ Back Titration | There are a lot of redox titrations classified according to the titrant used. - 1) Permanganimetric: Titrant KMnO₄ - 2) Dichromatometric: Titrant K₂Cr₂O₇ - 3) Titrations involving iodine (I₂) - •lodimetry - lodometry **Titrations** that create or consume I₂ are widely used in quantitative analysis. When a reducing analyte is titrated with iodine (the titrant), the method is called iodimetry. #### **Example: Quantification of Ascorbic Acid (Vitamin C)** $$\mathrm{C_6H_8O_6} + \mathrm{I_2} \rightarrow \mathrm{C_cH_6O_6} + 2\mathrm{I^-} + 2\mathrm{H^+}$$ Iodine rapidly oxidizes ascorbic acid, $C_6H_8O_6$, to produce dehydroascorbic acid, $C_6H_6O_6$. #### Ascorbic acid #### Dehydroascorbic acid Pictures taken from: http://en.wikipedia.org **lodometry** is the titration of iodine (I₂) produced when an oxidizing analyte is added to excess I-(iodide). Then the iodine (I_2) is usually titrated with standard **thiosulfate** solution. **Iodometry: Not a direct titration because there are 2 reactions:** analyte + $I^ \rightarrow$ I_2 **I**₂ + titrant (standard thiosulfate) → product Known #### lodimetric titrations: - a) A reducing analyte - b) One reaction - c) Standard solution: Iodine (I₂) #### **lodometric titrations:** - a) An oxidizing analyte - b) Two reactions - c) Standard solution: Sodium thisoufate #### Analytical applications: #### **lodimetric titrations:** #### **Species analyzed (reducing analytes)** $$SO_2$$, H_2S , Zn^{2+} , Cd^{2+} , Hg^{2+} , Pb^{2+} Cysteine, glutathione, mercaptoethanol Glucose (and other reducing sugars) #### **lodometric titrations:** #### Species analyzed (oxidizing analytes) $$NO_2^{-}$$, Cu ²⁺ | | Direct
lodimetric method | Indirect
Iodometric method | | |-----------------------|---|---|--| | Titrating agent | lodine for determination of reducing agents | I ⁻ is added to oxidizing agents,the librated I ₂ is titr. with Na ₂ S ₂ O ₃ | | | Indicator
(Starch) | Added at the beginning of titr. | Added near the end of titr (when the brown color of I ₂ becomes pale) | | | Type of reaction | One step reaction | Two step reactions | | | Standard solution | Standard solution: Iodine (I ₂) | Standard solution: Sodium thisoufate | | | E.P. | permanent blue
color | disappearance of
blue color | | #### lodine as oxidant